ガス除染技術

- ■ガス除染の特性・
- ●非耐熱性・非耐水性器材への 適用が可能である。
- ●浸透性・拡散性に優れている。
- ●耐性菌が発生しない。

■ガス除染方式の比較

■ 万人 你未 万式 砂 丘						
項目	過酸化水素	オゾン	酸化エチレン	ホルムアルデヒド	二酸化塩素	
除染性 (芽胞菌に対する性能)	0	0	0	0	0	
除染性 (化学剤に対する性能)	0	0	Δ	0	0	
器材への影響	0	0	0	0	×	
人体への影響	Δ	Δ	Δ	× (発がん性)	Δ	
安全化処理 (処理時間)	0	0	X (処理時間大)	× (処理時間大)	0	
総合評価	0	0	×	×	×	

■低濃度オゾンガスによる一般細菌の除菌効果

(防衛省データ)

菌株	未処理の菌数	オゾン処理後の菌数	除菌効果	オゾン処理 条件
大腸菌	1×10°	72	99.99	
黄色ブドウ球菌 N20	5×10°	57	99.98	オゾン濃度 1ppm
黄色ブドウ球菌 RN2677	5×10°	45	99.99	処理時間 60分
化膿レンサ球菌	3×10⁵	0	100	"

昭和薬科大学微生物研究室データ参考

■噴霧吸入したBCGTokyo株に対する殺菌効果・

2噴霧吸入させたBCGTokyo株は、「オゾン」の試験ではいずれの実験区分でも菌が 検出されなかった。陽性対照群との比較では、少なくとも(空中浮遊状態の抗酸菌を 想定した) 10°cfu/min.の噴霧菌量に対して、本装置は完全な除殺菌効果を示した。

実験	BCGTokyo株の	7H10寒天平板培地上での検出菌数		
区分	噴霧菌量と時間	オゾン	陽性対照群	
1	4.2×10 ² cfu/min.	0	41	
2	2.1×10 ² cfu/30sec.	0	22	
3	4.2×10¹cfu/min.	0	2	
4	2.1×10 ¹ cfu/30sec.	0	0	
5	4.2×10°cfu/min.	0	0	
6	2.1×10°cfu/30sec.	0	0	

(財)結核予防会 結核研究所

■オゾンガス除菌データ

Ξ	= 3 × 5 × 3 × 10 × 10 × 3									
		ウイルス・細菌	除菌方法	CT値(ppm×min)	×min) 死滅率(減少率)(%) ウイルス・細菌		ウイルス・細菌	除菌方法	CT値(ppm×min)	死滅率(減少率)(%)
	D	大腸菌	ガス	60	99.99	6	Norevirus(ノロウイルス)	ガス	72	100
	2	般 Staphylococcus pyogenes(化膿レンサ菌)	ガス	60	100	7	Bacillus cereus I F013494(セレウス菌)	ガス	24	100
	3	菌 Staphylococcus aureus FO 12732(化膿レンサ菌)	ガス	24	100	8	Vibio ParahaemolyticusIF012711(腸炎ビブリオ)	ガス	24	100
	4)	新型インフルエンザ(H1N1)	ガス	18	99.7	9	Salmonella typhimuriun IF014193(サルモネラ菌)	ガス	24	100
	5	新型インフルエンザ(H5N1)	ガス	60	100	110	硫化水素	ガス	28	100
_										

※各検証機関

- 12昭和薬科大学微生物研究室 ④北里大学ウイルス科
- ⑤厚生労働省及び消防庁
- ⑥ビジョンバイオ株式会社
- ③⑦⑧財団法人日本食品分析センター 9岡山工業技術センター

⑩和歌山市消防本部試験結果

■オゾンガス除染目安

【各種ウイルス・細菌の目安】

大腸菌・黄色ブドウ球菌(MRSA)・緑濃菌・ インフルエンザウイルス・ベスト・野兎病菌・ コクシジオイデス真菌・エボラ・天然痘ウイルス等

90%以上除染目安CT値	25
99%以上除染目安CT値	50
99.9%以上除染目安CT値	60

(注)除染室内環境湿度は60%以上が望ましい。

【芽胞菌(炭疽菌)の目安】

90%以上除染目安CT値	40000
99%以上除染目安CT値	50000
99.9%以上除染目安CT値	60000

⁽注)除染室内環境湿度は80%以上が望ましい。

【化学物質の目安】

硫化水素ガス90%以上除染目安CT値	30
硫化水素ガス99%以上除染目安CT値	60
塩素ガス90%以上除染目安CT値	30
塩素ガス99%以上除染目安CT値	60
アンモニア系90%以上除染目安CT値	75
アンモニア系99%以上除染目安CT値	150

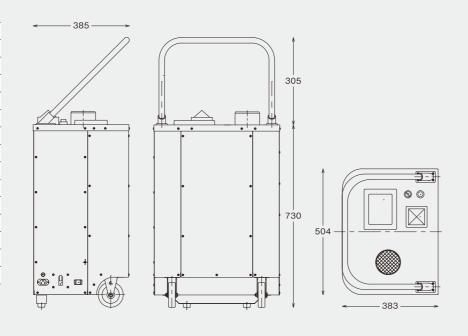
(注)除姿室内環境温度は60%以上80%以下が望ましい。

【除染CT值60処理時間目安】

密閉空間(湿度60%以上、気温20℃)にてBI-082を活用の場合オソン濃度0からの人ダート		
10m²	10分	
20m²	20分	
30m²	30分	

※BT-082推奨空間は30㎡以内で気密性が高い空間。また、CT値60の処理時間(到達時間)は 環境等(汚れ・気密性・気温・湿度)の条件により異なります。

CT値とは…


殺菌・不活性効果を示す指標として国際的に認めら れているもので、ガス濃度と時間の積(濃度「ppm」 ×時間「min」)を表しており、CT値が高いほどその 効果は増加し、逆にCT値が低いほどその効果は低 下します。

ナゾン処理の最適数値目標(ゴール ※その関係は小学校 の時に学んだ「矩阵 と速度と時間の似係」に、大変よく図を 多ま、古、CTG をイメージしてくだ さい。 オゾン 燻蒸 濃度 時間 [min]

【主な仕様】

品 名	CT測定器内蔵オゾンガス発生装置		
型 式	TM-10GCTS		
オゾン発生方式	無声放電方式		
1. "> 70 d	高 10g/h※		
オゾン発生量 (3段階調節)	中 6g/h※		
	低 2g/h※		
電源電圧	AC100V 50/60Hz		
消費電力	420W/520W		
電流値	4.8A/6.0A		
吹出風量	8m3/min 9m3/min		
本体重量	約40kg		
使用温度範囲	0~40℃(結露のないこと)		
内蔵センサ	オゾン・湿度センサ		
ヒューズ	10A		
漏電遮断器	AC100v20A(漏洩電流15mA)		

注:オゾン発生量は、当社測定条件(気温20℃湿度60%)によります。 使用環境によって変動する場合があります。

感染症対策·危機管理BC対策

Alacleanwbo

タッチパネル式 CT計内蔵 オゾン効果の 可視化を実現

湿度コントロール 可能 オゾンの効果は 湿度による変動有

ログレコード 機能搭載 実施データを 数値化して保存

^{**}CT値目では昭和薬科大学、京都大学(日本オゾン協会)、サンユー書房、 北里大学、財)日本食品分析センター、アメリカ合衆国ガイドラインCDC (東京医療保険大学)のCT値実験テストによる

世界初の高濃度&高CT値による強力除染・脱臭

オラくりんターボ

オゾン発生量・ファン風量 No.1

長寿命オゾン発生体 (12,000mg/h) による大容量オゾンと450m3/h の強力なブロアで部屋の隅々まで強力脱臭。

5.000m3の大規模なスペースまで対応できます。

当社最高技術によるオゾン発生体による高濃度 オゾンガス(10g/h※湿度60%)と540m³/hの強 カ風量により約5,000m3の大規模スペースに対

CT&湿度の「同時計測・制御」可能

100,000CT値·60ppmまで制御可能なコント ロールパネル(タッチパネル)で、濃度・湿度CT値 を同時制御できます。湿度は市販の加湿器を利 用し、設定湿度でON~OFFを自動制御します。

「キャリー用タイヤ」で

現場への即時持ち込みが可能

自治体への納入実績 No.1 (全国約240箇所の) 同系機。が全国の消防署・医療機関に納入

「オート運転→マニュアル運転」

の、切り替えが可能

設定CT値を入力し、スタートボタンを押すだけで、最短なCT値到達と除 菌・消臭完了後の安全濃度(0.1ppm)のオゾン分解運転まで全自動 のオート運転や、設定濃度を維持する簡潔運転などオート運転が可能、 各項目のマニュアル運転も切り替え可能です。

「タッチパネル

搭載コントローラーによる

遠隔コントロール」が可能

すべての状況を記録する

「ログ機能」付(PC出カ可)

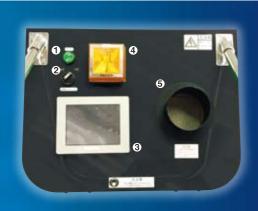
運転開始から設定CT値への到達、安全濃度までの分解運転までの記録 をグラフ化して確認できます。さらにUSBでログを出力することが可能で す。除菌・消臭作業の作業記録にお使いください

細かな制御が可能

- ·CT値(0~999999)
- ·濃度自動制御(0~60ppm)
- ・濃度測定(湿度計による加湿器連動運転)
- タイマー運転

オラくりんターボ操作フロー

【機能説明】


□上面パネル部

1 運転灯

4 オゾン発生灯

2 運転スイッチ 5 オゾン吐出口

3 表示・操作タッチパネル(取り外し式)

□タッチパネル部

上面に配置したタッチパネルから、 すべての情報にアクセスでき 機器の操作・データの参照などを ワンタッチで確認することができます。

設定・測定値の一覧管理画面

| 測定値設定画面

■運転時の詳細条件の設定 表示画面

■オゾン濃度・CT値のログ(記録)